Prediction of Tourism Demand in Iran by Using Artificial Neural Network (ANN) and Supporting Vector Machine (SVR)
Abstract
Keywords
Full Text:
PDFReferences
Boser, B., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory.
Crouch, G. I. (1995). A meta-analysis of tourism demand. Annals of Tourism Research, 22(1), 103–118. http://doi.org/10.1016/0160-7383(94)00054-V
Fyfe, C. (2000). Artificial Neural Networks and Information Theory (1.2 ed.). G.Dreyfus. (n.d.). Neural Networks Methodology and Applications. Springer-Verlag Berlin Heidelberg 2005.
Gershenson, C. (n.d.). Artificial Neural Networks for Beginners, 1–8. Johnson, P., & Ashworth, J. (1990). Modelling tourism demand: A summary review. Leisure Studies. Retrieved from http://www.tandfonline.com/doi/pdf/10.1080/02614369000390131
Kecman, V. (2001). Learning and soft computing: support vector machines, neural networks, and fuzzy logic models. MIT press.
Kon, S., & Turner, L. (2005). Neural network forecasting of tourism demand. Tourism Economics. Retrieved from http://www.ingentaconnect.com/content/ip/tec/2005/00000011/00000003/art00001
Law, R. (2001). The impact of the Asian financial crisis on Japanese demand for travel to Hong Kong: A study of various forecasting techniques. Journal of Travel & Tourism Marketing. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/10548400109511558.
Lim, C. (1997). Review of international tourism demand models. Annals of Tourism Research, 24(4), 835–849. http://doi.org/10.1016/S0160-7383(97)00049-2. Prediction of Tourism Demand in Iran by Using Artificial Neural Network (ANN) and Supporting Vector Machine (SVR) 44
Na, M. G., Kim, J. W., Lim, D. H., & Kang, Y. J. (2008). Residual stress prediction of dissimilar metals welding at NPPs using support vector regression. Nuclear Engineering and Design, 238, 1503–1510.
Pai, P., & Hong, W. (2005). An improved neural network model in forecasting arrivals. Annals of Tourism Research. Retrieved from https://scholar.google.com/scholar?q=An+improved+neural+network+model+in+forecasting+arrivals&btnG=&hl=en&as_sdt=0%2C5#0.
Rezania, M., & Sadatiseyedmahalleh, S. (2015). Measuring the Safety by Using the Fuzzy Logic Methods inUniversitiSains Malaysia. REVISTA CIENTIFICA. Retrieved from http://cientificaonline.com/index .php /CIENTIFICA/article/view/724.
Schölkopf, B., & Burges, C. (1999). Advances in kernel methods: support vector learning. MIT press.
Singh, S. K., & Gupta, A. K. (2010). Application of support vector regression in predicting thickness strains in hydro-mechanical deep drawing and comparison with ANN and FEM. CIRP Journal of Manufacturing Science and Technology, 3(1), 66–72.
Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism Management, 29(2), 203–220. http://doi.org/10.1016/j.tourman.2007.07.016.
Uysal, M. (1998). The determinants of tourism demand. … Economic Geography of the Tourist Industry: A Supply- …. Retrieved from https://books.google.com/books?hl=en&lr=&id=fntlPooU2wUC&oi=fnd&pg=PA79&dq=tourism+demand+Uysal+1998&ots=U9VYN1WCGC&sig=hOC1cC1MBpAROYcvdKaMwNa0fy4
Vakili, A. H., Davoodi, S., Arab, A., Researcher, Y., Club, E., Branch, E., … Tebal, N. (2015). Use of Artificial Neural Network in Predicting Permeability of Dispersive Clay Treated With Lime and Pozzolan. Ijsres, 3(1), 23–37.
Vapnik, V., Golowich, S. E., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing, 281–287.
Witt, S. F., & Witt, C. A. (1995). Forecasting tourism demand: A review of empirical research. International Journal of Forecasting, 11(3), 447–475. http://doi.org/10.1016/0169-2070(95)00591-7.
DOI: http://dx.doi.org/10.18415/ijmmu.v3i1.37
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 International Journal of Multicultural and Multireligious Understanding
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://ijmmu.com
editor@ijmmu.com
facebook.com/ijmmu
Copyright © 2014-2018 IJMMU. All rights reserved.