Comparative Analysis of Modified Altman Z-Score, Springate, Zmijewski, Bankometer, Grover, and RGEC Models for Financial Distress Prediction (Empirical Study in Banking Companies Listed on IDX 2011-2016)
Abstract
This study aimed at determining the prediction of financial distress in banking sector companies listed on the Indonesia Stock Exchange (IDX) with the research period of 2011-2016. This study utilized a quantitative approach. Determination of the sample was done by purposive sampling technique. The number of research samples consisted of 30 banking companies. The data analysis technique used was descriptive data analysis of each financial distress prediction model. The prediction models included Modified Altman Z-Score, Springate, Zmijewski, Bankometer, Grover, and RGEC. The results showed that (1) Modified Altman Z-Score analyzed that 16 samples were in the gray area criteria and 14 samples were in the bankrupt criteria (2) Springate analyzed 30 samples in the bankrupt criteria (3) Zmijewski analyzed 30 samples in the bankrupt criteria (4 ) Bankometer analyzed 30 samples in very healthy criteria (5) Grover analyzed 1 sample in gray area criteria and 29 samples in non-bankrupt criteria (6) RGEC analyzed 14 samples in very healthy criteria, 15 samples in healthy criteria, and 1 sample in the criteria of fairly healthy (7) The comparison between the results of the analysis of all models showed that the Modified Altman Z-Score, Springate, and Zmijewski models analyzed all samples included in the distress category. On the other hand, Bankometer, Grover, and RGEC models analyzed all samples included in the non-distress category.
Keywords
Full Text:
PDFReferences
Bank Indonesia. (2017). Kajian Stabilitas Keuangan No.28, Maret 2017. Jakarta : Bank Indonesia.
Bank Indonesia. (2019). Kajian Stabilitas Keuangan No.32, Maret 2019. Jakarta : Bank Indonesia.
Budiman, T., Herwany, A., Kristanti, & Farida, T. (2017). An Evaluation of Financial Stress for Islamic Banks in Indonesia Using a Bankometer Model. Journal of Finance and Banking Review, Vol. 2 No. 3 pp. 14-20
Hantono. (2019). Memprediksi Financial Distress dengan Menggunakan Model Altman Score, Grover Score, Zmijewski Score (Studi Kasus pada Perusahaan Perbankan). Jurnal Riset Akuntansi Going Concern, Vol. 14 No.1 pp. 168-180.
Iqbal, M., Riyadi, S., Sabrianti, P., & Afidah, A. N. (2018). Pemetaan Tingkat Kesulitan Keuangan Bank Syariah di Indonesia. Jurnal Economia, Vol. 14 No. 2 pp. 138-157.
Ismawati, K., & Istria, P. C. (2015). Detektor Financial distress Perusahaan Perbankan Indonesia. Jurnal Ekonomi Bisnis dan Kewirausahaan, 4(1), 6-29.
Kurniawati, L., & Kholis, N. (2016). Analisis model prediksi financial distress pada perusahaan perbankan syariah di indonesia. Syariah Paper Accounting FEB UMS, pp. 145-153.
Refmasari, Veranda Aga dan Setiawan, Ngadirin. (2014). Penilaian Tingkat Kesehatan Bank Umum Menggunakan Metode RGEC dengan Cakupan Risk-Profile, Earnings, dan Capital pada Bank Pembangunan Daerah Provinsi Daerah Istimewa Yogyakarta Tahun 2012. Jurnal Profita, Vol. 2 No.1 pp. 41-45.
Rudianto. (2013). Akuntansi Manajemen Informasi untuk Pengambilan Keputusan Strategis. Jakarta : Erlangga.
World Bank. (2017). GDP Growth (Annual %) – Indonesia. [online] https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?end=2016&locations=ID&start=2012 [5 November 2019].
DOI: http://dx.doi.org/10.18415/ijmmu.v7i4.1586
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 International Journal of Multicultural and Multireligious Understanding
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://ijmmu.com
editor@ijmmu.com
facebook.com/ijmmu
Copyright © 2014-2018 IJMMU. All rights reserved.